Medjigbodo, Adandé A, Sonounameto, Eric G, Djihinto, Oswald Y, Abbey, Emmanuella, Salavi, Esther B, Djossou, Laurette, Badolo, Athanase, Djogbenou, Luc and Jurenka, Russell (2021) 'Interplay Between Oxytetracycline and the Homozygote kdr (L1014F) Resistance Genotype on Fecundity in Anopheles gambiae (Diptera: Culicidae) Mosquitoes'. Journal of Insect Science, Vol 21, Issue 4.
|
Text
Medjogbodo_2021_Tetracycline.pdf - Published Version Available under License Creative Commons Attribution Non-commercial. Download (343kB) | Preview |
Abstract
The insecticide resistance in Anopheles gambiae mosquitoes has remained the major threat for vector control programs but the fitness effects conferred by these mechanisms are poorly understood. To fill this knowledge gap, the present study aimed at testing the hypothesis that antibiotic oxytetracycline could have an interaction with insecticide resistance genotypes and consequently inhibit the fecundity in An. gambiae. Four strains of An. gambiae: Kisumu (susceptible), KisKdr (kdr (L1014F) resistant), AcerKis (ace-1 (G119S) resistant) and AcerKdrKis (both kdr (L1014F) and ace-1 (G119S) resistant) were used in this study. The different strains were allowed to bloodfeed on a rabbit previously treated with antibiotic oxytetracycline at a concentration of 39·10–5 M. Three days later, ovarian follicles were dissected from individual mosquito ovaries into physiological saline solution (0.9% NaCl) under a stereomicroscope and the eggs were counted. Fecundity was substantially lower in oxytetracycline-exposed KisKdr females when compared to that of the untreated individuals and oxytetracycline-exposed Kisumu females. The exposed AcerKis females displayed an increased fecundity compared to their nontreated counterparts whereas they had reduced fecundity compared to that of oxytetracycline-exposed Kisumu females. There was no substantial difference between the fecundity in the treated and untreated AcerKdrKis females. The oxytetracycline-exposed AcerKdrKis mosquitoes had an increased fecundity compared to that of the exposed Kisumu females. Our data indicate an indirect effect of oxytetracycline in reducing fecundity of An. gambiae mosquitoes carrying kdrR (L1014F) genotype. These findings could be useful for designing new integrated approaches for malaria vector control in endemic countries.
Item Type: | Article |
---|---|
Subjects: | QX Parasitology > QX 4 General works QX Parasitology > Insects. Other Parasites > QX 510 Mosquitoes QX Parasitology > Insects. Other Parasites > QX 515 Anopheles QX Parasitology > Insects. Other Parasites > QX 600 Insect control. Tick control |
Faculty: Department: | Biological Sciences > Vector Biology Department |
Digital Object Identifer (DOI): | https://doi.org/10.1093/jisesa/ieab056 |
Depositing User: | Samantha Sheldrake |
Date Deposited: | 05 Oct 2021 14:46 |
Last Modified: | 05 Oct 2021 14:46 |
URI: | https://archive.lstmed.ac.uk/id/eprint/19089 |
Statistics
Actions (login required)
Edit Item |