LSTM Home > LSTM Research > LSTM Online Archive

Is vector control needed to eliminate gambiense human African trypanosomiasis?

Solano, Philippe, Torr, Steve ORCID: https://orcid.org/0000-0001-9550-4030 and Lehane, Mike (2013) 'Is vector control needed to eliminate gambiense human African trypanosomiasis?'. Frontiers in Cellular and Infection Microbiology, Vol 3, e33.

[img]
Preview
Text
fcimb-03-00033.pdf - Published Version
Available under License Creative Commons Attribution.

Download (717kB)

Abstract

Introduction
Human African Trypanosomiasis (HAT), or sleeping sickness, is a neglected tropical parasitic disease of humans due to trypanosomes transmitted by tsetse flies (Glossina spp.) in sub-Saharan Africa. Comparable diseases (Animal African Trypanosomiasis—AAT—nagana) are present in domesticated animals and these are an important constraint to animal health and production in Africa (Jordan, 1986; Kabayo, 2002). For HAT, there is no vaccine, no chemoprophylaxis, and treatment is still long and difficult to administer despite recent improvements (Simarro et al., 2012). In most cases HAT is fatal if untreated. The disease affects rural communities in remote parts of Africa, particularly people working outdoors (e.g., farmers, foresters, fishermen, people collecting water) and hence at greater risk of being bitten by tsetse. Two flagellate protozoan parasites cause HAT. Trypanosoma brucei rhodesiense causes the rhodesiense form of the disease (currently <5% of all cases) in eastern and southern Africa, and T. b. gambiense causes the gambiense form of the disease (currently >95% of all cases) in Central and West Africa (Simarro et al., 2010). Although it is accepted that tsetse control plays a central role in combatting the rhodesiense form of HAT (Welburn et al., 2009), this has not been the case for the gambiense form. Indeed in the strategy recommended by WHO to control sleeping sickness, active case detection and treatment has always been the first, it not the only method recommended, until very recently. Historically, there have been two clear justifications for this—(1) that vector control is not required and/or that (2) it is too expensive and difficult to organize; we will discuss both.

Item Type: Article
Subjects: QX Parasitology > Insects. Other Parasites > QX 600 Insect control. Tick control
QX Parasitology > Insects. Other Parasites > QX 650 Insect vectors
WA Public Health > Preventive Medicine > WA 110 Prevention and control of communicable diseases. Transmission of infectious diseases
WA Public Health > Preventive Medicine > WA 240 Disinfection. Disinfestation. Pesticides (including diseases caused by)
WA Public Health > Health Problems of Special Population Groups > WA 395 Health in developing countries
WC Communicable Diseases > Tropical and Parasitic Diseases > WC 705 Trypanosomiasis
Faculty: Department: Biological Sciences > Vector Biology Department
Digital Object Identifer (DOI): https://doi.org/10.3389/fcimb.2013.00033
Depositing User: Samantha Sheldrake
Date Deposited: 05 Mar 2014 13:22
Last Modified: 06 Feb 2018 13:06
URI: https://archive.lstmed.ac.uk/id/eprint/3584

Statistics

View details

Actions (login required)

Edit Item Edit Item