LSTM Home > LSTM Research > LSTM Online Archive

Characterization of the Prophage Repertoire of African Salmonella Typhimurium ST313 Reveals High Levels of Spontaneous Induction of Novel Phage BTP1.

Owen, Siân V, Wenner, Nicolas, Canals, Rocío, Makumi, Angela, Hammarlöf, Disa L, Gordon, Melita A, Aertsen, Abram, Feasey, Nicholas ORCID: https://orcid.org/0000-0003-4041-1405 and Hinton, Jay C D (2017) 'Characterization of the Prophage Repertoire of African Salmonella Typhimurium ST313 Reveals High Levels of Spontaneous Induction of Novel Phage BTP1.'. Frontiers in Microbiology, Vol 8, e235.

[img]
Preview
Text
Frontiers_Microbiology_08_235_2017.pdf - Published Version
Available under License Creative Commons Attribution.

Download (6MB) | Preview

Abstract

In the past 30 years, Salmonella bloodstream infections have become a significant health problem in sub-Saharan Africa and are responsible for the deaths of an estimated 390,000 people each year. The disease is predominantly caused by a recently described sequence type of Salmonella Typhimurium: ST313, which has a distinctive set of prophage sequences. We have thoroughly characterized the ST313-associated prophages both genetically and experimentally. ST313 representative strain D23580 contains five full-length prophages: BTP1, Gifsy-2(D23580), ST64B(D23580), Gifsy-1(D23580), and BTP5. We show that common S. Typhimurium prophages Gifsy-2, Gifsy-1, and ST64B are inactivated in ST313 by mutations. Prophage BTP1 was found to be a functional novel phage, and the first isolate of the proposed new species "Salmonella virus BTP1", belonging to the P22virus genus. Surprisingly, ∼10(9) BTP1 virus particles per ml were detected in the supernatant of non-induced, stationary-phase cultures of strain D23580, representing the highest spontaneously induced phage titer so far reported for a bacterial prophage. High spontaneous induction is shown to be an intrinsic property of prophage BTP1, and indicates the phage-mediated lysis of around 0.2% of the lysogenic population. The fact that BTP1 is highly conserved in ST313 poses interesting questions about the potential fitness costs and benefits of novel prophages in epidemic S. Typhimurium ST313.

Item Type: Article
Subjects: QU Biochemistry > Genetics > QU 460 Genomics. Proteomics
QW Microbiology and Immunology > Viruses > QW 160 Viruses (General). Virology
WA Public Health > Health Problems of Special Population Groups > WA 395 Health in developing countries
WC Communicable Diseases > Infection. Bacterial Infections > Enteric Infections > WC 269 Salmonella infections
Faculty: Department: Clinical Sciences & International Health > Clinical Sciences Department
Clinical Sciences & International Health > International Public Health Department
Digital Object Identifer (DOI): https://doi.org/10.3389/fmicb.2017.00235
SWORD Depositor: JISC Pubrouter
Depositing User: JISC Pubrouter
Date Deposited: 20 Apr 2017 11:36
Last Modified: 06 Feb 2018 13:14
URI: https://archive.lstmed.ac.uk/id/eprint/6947

Statistics

View details

Actions (login required)

Edit Item Edit Item